

КОНДЕНСАТОРНЫЙ БЛОК ПИТАНИЯ ЭСТРА-БК

Руководство по эксплуатации

27.11.50-151-23566247 (версия 1.09 от 13.09.24)

Содержание

1 НАЗНАЧЕНИЕ	5
2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ	6
2.1 Климатические условия эксплуатации	6
2.2 Конструктивное исполнение	6
2.3 Электрическая прочность изоляции	7
2.4 Электромагнитная совместимость	7
2.5 Входные цепи питания	8
2.6 Выходные цепи питания	8
2.7 Сигнализация	9
2.8 Габаритные размеры и масса устройства, сроки службы 1	LO
3 КОМПЛЕКТ ПОСТАВКИ, МАРКИРОВКА, УПАКОВКА 1	
3.1 Комплект поставки	1
3.2 Маркировка1	۱1
3.3 Упаковка	1
4 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ	2
4.1 Эксплуатационные ограничения 1	2
4.2 Меры безопасности при подготовке устройства к использованию 1	2
4.3 Размещение и монтаж, подготовка к работе1	13
4.4 Возможные неисправности и методы их устранения1	4
4.5 Текущий ремонт1	L 4
4.6 Хранение 1	L 5
4.7 Транспортирование 1	L 5
4.8 Утилизация 1	L 5
ПРИЛОЖЕНИЕ А	16
ПРИЛОЖЕНИЕ Б 1	8
ПРИЛОЖЕНИЕ В 1	19

Перечень сокращений

БК - батарея конденсаторов;

3Д3 - защита от дуговых замыканий;

КЗ - короткое замыкание;

ЛЗШ - логическая защита шин;

НЗ - нормально закрытый контакт;

НО - нормально открытый контакт;

РЗА - релейная защита и автоматика;

ТСН - трансформатор собственных нужд;

УРОВ - устройство резервирования отказа выключателя;

ЭМО - электромагнит отключения выключателя.

Руководство по эксплуатации содержит основные технические характеристики, описание принципа работы, способ установки и подключения на объекте, правила эксплуатации блока питания ЭСТРА-БК.

К эксплуатации устройства допускаются лица, изучившие настоящий документ, паспорт, прошедшие проверку знаний правил техники безопасности и эксплуатации электроустановок электрических станций и подстанций и имеющие подготовку в области промышленной электроники.

Предприятие-изготовитель может вносить изменения в устройство, связанные с его усовершенствованием, в целом не ухудшающие его характеристики и не отраженные в данном документе.

1 НАЗНАЧЕНИЕ

Блок питания ЭСТРА-БК предназначен для повышения надежности питания микропроцессорных устройств релейной защиты, ее дискретных входов, организации питания шинок ЛЗШ, УРОВ и ЗДЗ в нормальных и аварийных режимах. Допускается коммутация от выхода ЭСТРА-БК катушек электромагнитов отключения выключателей с током срабатывания не более 4А.

Основные функции блока питания с батареей конденсаторов:

- Повышение устойчивости питания устройств релейной защиты и автоматики, установленных на станциях и подстанциях с переменным и выпрямленным оперативным током, в нормальных и аварийных режимах;
- организация питания дискретных входов устройств релейной защиты и автоматики;
- организация питания шинок ЛЗШ, УРОВ и ЗДЗ, обеспечение их надежной работы;
- продление времени работоспособности устройств РЗА в случаях, когда их время срабатывания превышает допустимый перерыв оперативного питания;
- коммутация ЭМО выключателей;
- кнопка принудительного разряда встроенной конденсаторной батареи;
- электронная защита от КЗ на выходе устройства;
- светодиодная сигнализация о готовности к работе и срабатывания защиты от КЗ;
- выходное стабилизированное напряжение при широком диапазоне входных напряжений.

2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

2.1 Климатические условия эксплуатации

Условия эксплуатации устройства должны исключать воздействие прямого солнечного излучения, прямое попадание атмосферных осадков, конденсацию влаги и наличие агрессивной среды.

Таблица 2.1 - Климатические условия эксплуатации

Климатическое исполнение (по ГОСТ 15543.1)	УХЛЗ.1
Диапазон рабочих значений температуры (предельные значения)	-40° ÷ +55°C
Относительная влажность воздуха (среднегодовое значение)	≤ 80% при 25°C
Тип атмосферы по содержанию на открытом воздухе коррозионно-активных агентов	II
Диапазон рабочих значений атмосферного давления	75 ÷ 106,7кПа
Высота над уровнем моря	≤ 2000M

2.2 Конструктивное исполнение

Клеммные колодки цепей питания, входных и выходных цепей допускают присоединение под винт одного или двух одинаковых проводников общим сечением до 2,5mm 2 включительно и сечением не менее 0,5mm 2 каждый.

Таблица 2.2 - Конструктивное исполнение

Группа механического исполнения (ГОСТ 17516.1)	M7
Сейсмостойкость по MSK-64 при уровне установки над нулевой отметкой до 10м (ГОСТ 17516.1)	≤ 9 баллов
Степень защиты для оболочки блока (ГОСТ 14254-96)	IP40
Степень защиты для разъемных контактов (ГОСТ 14254-96)	IP20
Способ защиты человека от поражения электрическим током (ГОСТ 12.2.007-75)	класс I
Исполнение контактных соединений (ГОСТ 10434-82)	класс 2

2.3 Электрическая прочность изоляции

Корпус должен быть обязательно заземлен. На лицевой стороне устройства выведен винт для подключения защитного заземления к общему контуру заземления. Заземляющий провод должен быть не более 2 метров и сечением 4мm^2 .

Таблица 2.3 - Электрическая прочность изоляции

Сопротивление изоляции всех независимых цепей устройства относительно корпуса и между собой при 500В	≥ 100MOm
Выдерживаемое испытательное напряжение переменного тока между всеми независимыми цепями относительно корпуса и между собой	2,3кВ;50Гц в течение 1мин
Выдерживаемое испытательное импульсное напряжение между всеми независимыми цепями относительно корпуса и между собой	5кВ;1,2мкс/ /50мкс с ин- тервалом 5с

2.4 Электромагнитная совместимость

Блок питания при поданном напряжении оперативного тока сохраняет функционирование без нарушений и сбоев при следующих воздействиях.

Таблица 2.4 - Электромагнитная совместимость

Тип помехи	Степень жесткости	Испытательный уровень
Магнитное поле промышленной частоты (IEC 61000-6-2, IEC 61000-4-8)	4	30A/м (непрерывно), 300A/м (1c)
Радиочастотное электромагнитное поле (IEC 61000-4-3)	3	10B/m
Электростатические разряды (IEC 61000-4-2)	3	6кВ (контактный раз- ряд), 8кВ (воздушный разряд)
Микросекундные импульсные поме- хи большой энергии 1/50мкс, 6,4/16мкс (IEC 61000-4-5)	4	4кВ
Наносекундные импульсные помехи (IEC 61000-4-4)	4	2кВ, 5/50нс
Повторяющиеся колебательные по- мехи (IEC 61000-4-18)	3	2,5кВ на частоте 1МГц

2.5 Входные цепи питания

Устройство подключается к ТСН, допускается подключение к измерительным трансформаторам напряжения на линейное напряжение 100В. В цепях питания устройства необходима установка защитного автоматического выключателя с номинальным током 2A и характеристикой срабатывания «С».

Таблица 2.5 - Параметры входных цепей

Частота входного напряжения	45 — 55Гц
Номинальное входное напряжение	220B
Рабочий диапазон напряжения переменного тока	90 – 265B
Рабочий диапазон напряжения постоянного тока*	130 – 350B*
Потребляемая мощность на холостом ходе	5Вт
Пусковой ток при включении	16А, 20мс
Номинал предохранителя на входе	1A 250B «Slow»

^{(*) –} питание от источника постоянного напряжения допускается только для блоков с серийными номерами №00063 и выше.

2.6 Выходные цепи питания

При наличии входного напряжения блок осуществляет питание нагрузки стабилизированным напряжением и одновременный заряд внутренней БК.

После пропадания входного напряжения выходное напряжение начинает плавно снижаться, обеспечивая тем самым работу нагрузки за счет энергии, сохраненной в конденсаторной батарее.

В блоке предусмотрена электронная защита от КЗ в выходных цепях устройства, порог срабатывания защиты — около 7А. После срабатывания защиты встроенная конденсаторная батарея будет отключена от выхода, а на блоке загорится светодиод «Авария». Сброс защиты осуществляется после снятия входного напряжения и полного разряда БК.

Полное время саморазряда конденсаторов — около 10 минут, для ускорения процесса разряда на блоке предусмотрена кнопка принудительного разряда БК. После полного разряда встроенной батареи конденсаторов с помощью кнопки, перед повторным использованием кнопки необходимо выждать паузу длительность не менее 5 минут, необходимую для охлаждения цепей разряда.

Таблица 2.6 - Параметры выходных цепей

Номинальное выходное напряжение постоянного тока при отсутствии нагрузки		235-250B
Длительно допустимая выход	ная нагрузка*	100Вт
Емкость встроенного конденс	аторного накопителя	6800±15% мкФ
	при отсутствии нагрузки	2c
Время установления выходного напряжения**	при нагрузке 20Вт	3c
выходного наприжении	при нагрузке 50Вт	4c
	при нагрузке 5Вт	20c
Время снижения	при нагрузке 10Вт	10c
напряжения на выходе до 140В	при нагрузке 20Вт	4c
	при нагрузке 50Вт	2c
Время снижения напряжения на выходе до 20В на холостом ходе при отсутствии входного напряжения		600c
Время снижения напряжения на выходе до 20В на холостом ходе при отсутствии входного напряжения с помощью кнопки разряда		30c
Время переключения на работу от БК при пропадании напряжения питания		без задержки
Порог срабатывания защиты с	от К3 на выходе	7A

^{(*) —} выходная мощность указана для номинального напряжения питания ~220В. При питании от напряжения номиналом ~110В длительно допустимая выходная нагрузка составляет 50Вт;

2.7 Сигнализация

Светодиодная сигнализация на блоке состоит из следующих сигналов:

- «Авария» срабатывание защиты от КЗ на выходе. Сброс сигнализации осуществляется путем снятия питания и разряде БК;
- «Ивых» наличие на выходе напряжения свыше 20В. Сброс сигнализации осуществляется после отключения блока питания от входного напряжения и полного разряда батареи конденсаторов;
- «Готов» выходное напряжения на выходе блока питания превышает 180В.

^{(**) –} время нормируется только при питании номинальным входным напряжением.

Для выдачи сигнала в цепи сигнализации для блоков питания, серийные номера которых начинаются с №00063, дополнительно предусмотрено выходное реле «Готов» с НЗ-контактом. Режимы работы реле и его коммутационная способность приведена в Таблицах 2.7, 2.8.

Таблица 2.7 – Характеристики выходного реле «Готов»

Тип выходного контакта	нормально закрытый контакт
Напряжение на выходе блока питания, при котором происходит срабатывание/возврат реле	180/170B
Коммутируемый постоянный/переменный ток при активной нагрузке	≤ 0,1A
Рабочий диапазон переменного напряжения	0 – 230B
Рабочий диапазон постоянного напряжения	0 – 230B

Таблица 2.8 - Состояние выходного реле «Готов»

Состояние реле	Uвых > 180B	Срабатывание защиты от КЗ
Замкнуто	нет	нет
Замкнуто	нет	да
Разомкнуто	да	нет

2.8 Габаритные размеры и масса устройства, сроки службы

Таблица 2.9 - Габаритные размеры и масса устройства

Габаритные размеры блока питания	246×150×115mm
Масса блока питания	≤ 2,5кг

Таблица 2.10 - Сроки службы

Срок службы устройства*	25 лет
Средняя наработка на отказ	125000 часов

^{(*) –} при условии проведения требуемых технических мероприятий по обслуживанию с заменой, при необходимости, материалов и комплектующих, имеющих меньший срок службы.

3 КОМПЛЕКТ ПОСТАВКИ, МАРКИРОВКА, УПАКОВКА

3.1 Комплект поставки

Наименование	Количество
Блок питания ЭСТРА-БК	1 шт
Ответные части разъемов	1 комплект
Паспорт	1 экземпляр
Руководство по эксплуатации	По запросу

3.2 Маркировка

- 1) Маркировка блока питания выполнена на передней стороне корпуса в соответствии с ГОСТ 18620-86. На маркировке указаны основные данные устройства:
 - обозначение изделия;
 - дата изготовления;
 - заводской номер;
 - товарный знак предприятия-изготовителя;
 - нумерация разъемов и назначение контактов устройства;
 - обозначение вывода защитного заземления.
- 2) Маркировка транспортной тары наносится транспортной компанией и содержит основные, дополнительные и информационные надписи, и манипуляционные знаки согласно ГОСТ 14192-96.

3.3 Упаковка

- 1) Устройство упаковано в коробку, в ней осуществляется транспортирование.
- 2) Снятие транспортной тары должно производиться с соблюдением манипуляционных знаков.

4 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

4.1 Эксплуатационные ограничения

- 1) Климатические условия эксплуатации устройства указаны в разделе 2 настоящего РЭ, эксплуатационные технические характеристики не должны превышать значений, приведенных в разделе 2.
- 2) Возможность работы устройства в условиях, отличных от указанных в настоящем «Руководстве по эксплуатации», должна согласовываться с предприятием-изготовителем.

4.2 Меры безопасности при подготовке устройства к использованию

- 1) При эксплуатации устройства следует руководствоваться «Правилами техники безопасности при эксплуатации электроустановок, электрических станций и подстанций», а также настоящим «Руководством по эксплуатации». К эксплуатации и обслуживанию устройства допускаются лица, изучившие настоящее РЭ, паспорт и прошедшие специальную подготовку в области промышленной электроники. Лица, допущенные к работе с устройством, должны проходить ежегодную проверку знаний по технике безопасности.
- 2) Опасным фактором при эксплуатации блока питания является напряжение оперативного питания 220В. Все работы на зажимах устройства следует производить в обесточенном состоянии.
- 3) Установка, демонтаж и ремонт блока питания должны производиться при полном отключении устройства от сети и разряде встроенной батареи конденсаторов (при полном отсутствии светодиодной сигнализации). При отсутствии сетевого напряжения на клеммах блока может находиться опасное для жизни напряжение.
- 4) Запрещается устанавливать в держатели предохранителей перемычки или плавкие вставки с номиналами, отличающимися от указанных в настоящем руководстве.
- 5) Заземление и защитные меры безопасности должны выполняться в соответствии с требованиями действующих "Правил устройства электроустановок". Для заземления устройства на корпусе предусмотрен специальный заземляющий винт, который используется для подключения к заземляющему контуру.

4.3 Размещение и монтаж, подготовка к работе

- 1) Внешний вид блока питания, габаритные и установочные размеры приведены в ПРИЛОЖЕНИИ Б. Пример подключения внешних цепей приведен в ПРИЛОЖЕНИИ В.
 - 2) Объем и последовательность монтажа устройства:
 - снять упаковку, проверить корпус блока питания на наличие механических повреждений;
 - установить устройство в релейный отсек (шкаф управления);
 - подключить внешние цепи, проверить соответствие собранной схемы технической документации на устройство;
 - выдать сетевое напряжение и убедиться, что светодиоды «Ивых», «Иготов» светятся, а напряжение на нагрузке соответствует значениям, приведенным в разделе 2;
 - снять сетевое напряжение и убедиться, что при постоянной нагрузке в 5Вт снижение напряжения на выходе происходит за время, соответствующее значениям раздела 2;
 - выдать сетевое напряжение и убедиться, что блок снова зарядил БК (загорелся светодиод «Готов»);
 - отключить нагрузку и сеть. Осуществить разряд внутренней батареи конденсаторов с помощью кнопки на корпусе устройства. Проконтролировать время разряда в соответствии со значениями раздела 2.
- 3) Все работы по монтажу, демонтажу и эксплуатации блока питания должны выполняться в соответствии с действующими «Межотраслевыми правилами по охране труда (правилами безопасности) при эксплуатации электроустановок», а также действующими ведомственными инструкциями.

4.4 Возможные неисправности и методы их устранения

Внешние проявления	Вероятная причина и способ устранения
При наличии сетевого напряжения светодиод «Ивых» не светится	1. Проверить наличие напряжения на клеммах блока питания 2. Проверить затяжку винтовых соединений 3. Проверить целостность предохранителя
1. При наличии сетевого напряжения не горят светодиоды «Иготов» и «Ивых» 2. Выбивает автоматический выключатель по цепям питания, сгорает предохранитель	1. Неисправность блока питания 2. Обратиться к заводу-изготовителю
Светодиод «Авария» загора- ется при выдаче питания на устройство	1. Проверить величину нагрузки на выходе устройства 2. Проверить цепи нагрузки на наличие КЗ 3. В выходных цепях БК установлен автоматический выключатель, приводящий к срабатыванию встроенной защиты от КЗ. Исключить выключатель из выходных цепей
После снятия питания и отсутствии нагрузки на выходе блока питания происходит быстрый разряд БК (до 30 сек)	Проверить, что кнопка разряда на корпусе устройства не зажата и не находится в заклинившем состоянии

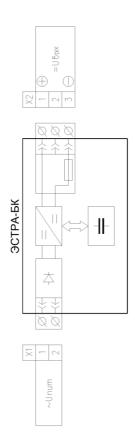
4.5 Текущий ремонт

- 1) Устройство является восстанавливаемым и ремонтопригодным.
- 2) Ремонт блока питания в период гарантийной эксплуатации производится заводом-изготовителем. В последующие годы эксплуатации ремонт производится по договору с заводом-изготовителем квалифицированными специалистами, аттестованными на право ремонта микроэлектронных устройств.

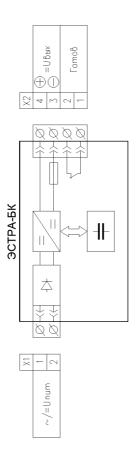
4.6 Хранение

- 1) Устройство до введения в эксплуатацию хранится на складе в упаковке предприятия изготовителя, условия хранения 2 (C). Изделие без упаковки хранится при температуре окружающей среды $0-40^{\circ}$ C и относительной влажности 80% (при температуре 25° C).
- 2) В помещениях для хранения содержание пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию, не должно превышать содержание коррозионно-активных агентов для атмосферы типа I по ГОСТ 15150-69.
- Срок хранения устройства в упаковке изготовителя 12 месяцев со дня упаковывания.
- 4) При снятии блока питания с хранения в условиях пониженной температуры необходимо выдержать его в упаковке не менее двух часов при комнатной температуре.

4.7 Транспортирование

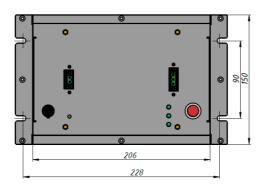

- 1) Изделие транспортируется в крытых железнодорожных вагонах, перевозится автомобильным транспортом с защитой от дождя и снега, а также транспортируется в герметизированных отапливаемых отсеках самолетов. При перевозке в железнодорожных вагонах вид отправки мелкий, малотоннажный.
- 2) Климатические условия транспортирования устройства являются такими же, как при хранении.

4.8 Утилизация

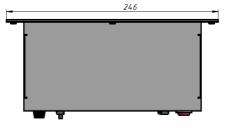

Устройство не содержит веществ и компонентов, вредно влияющих на окружающую среду и здоровье человека, поэтому особых мер по защите при утилизации не требуется.

ПРИЛОЖЕНИЕ А

Внешние цепи для блоков питания с заводскими номерами до №00063

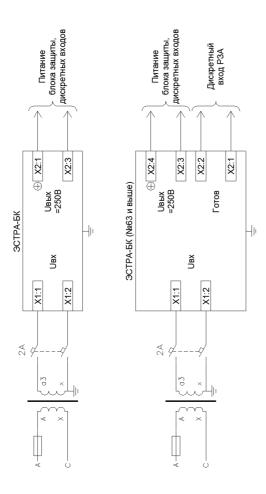


Внешние цепи для блоков питания с заводскими номерами №00063 и выше



ПРИЛОЖЕНИЕ Б

Внешний вид и габаритный чертеж корпуса устройства





ПРИЛОЖЕНИЕ В

Подключение внешних цепей к блоку питания

Совместное подключение ЭСТРА-БК и ЭСТРА-БПК для организации бесперебойного питания устройств РЗА

